
Atiyah–Singer Index Theorem

JINYI Wang 王进一
Advisor: Prof. Nicolai Reshetikhin

Spring 2023

1



Atiyah–Singer Index Theorem Page 2 / 26

Contents

1 Motivations and Examples 5

1.1 Chern–Weil Theory and Chern–Gauss–Bonnet Theorem . . . . . . . . . . . . . . . . 5

1.1.1 Connection and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Chern–Weil Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Chern–Gauss–Bonnet Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Riemann–Roch Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Hirzebruch–Riemann–Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Grothendieck–Riemann–Roch Theorem . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Hirzebruch Signature Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Elliptic Operators and the Fredholm Index . . . . . . . . . . . . . . . . . . . 8

1.3.2 De Rham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Dolbeault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Statements 10

2.1 First Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Differential Operators and the Symbol . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Elliptic Operators and the Symbol Class . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Analytic Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 K-theoretic Thom Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.6 Topological Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Second Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Super Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Clifford Algebras and Clifford Modules . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Spin Manifolds and Spinor bundles . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Clifford Superconnections and Curvature . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Dirac Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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Abstract

The Atiyah-Singer index theorem is a seminal result in geometry and topology with many

applications. This work presents an exposition on the Atiyah–Singer index theorem and related

topics. In the first section, we survey the precursors of index theorems across mathematics. In the

second section, we develop the requisite elements, including K-theory and Dirac operators, to state

the index theorems. In the third section, we outline proofs of the theorems.
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1 Motivations and Examples

There are motivations of the index theorem from various fields across mathematics, including

algebraic topology, algebraic geometry and analysis. We discuss these following Freed [6].

1.1 Chern–Weil Theory and Chern–Gauss–Bonnet Theorem

1.1.1 Connection and Curvature

Let E → M be a (real or complex) vector bundle. A connection ∇ = ∇E on E is a linear map

∇ : Γ(M,E) → Ω1(M,E) = Γ(M,T ∗M ⊗ E),

satisfying the Leibniz rule

∇(fs) = f∇s+ s⊗ df.

A connection on E naturally induces connections on its dual E∗. Connections on two bundles

induce a connection on their tensor product.

For a Riemannian manifold, there is a special connection called the Levi-Civita connection on

TM .

The curvature form of the connection ∇ on E is the End(E)-valued 2-form R ∈ Ω2(M,End(E))

such that

R(X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s, X, Y ∈ Γ(TM), s ∈ Γ(E).

1.1.2 Chern–Weil Theory

For any complex vector bundle E → M with a connection ∇, Chern–Weil theory gives differ-

ential form representatives of characteristic classes from the curvature tensor R ∈ Ω2(M,End(E)).

The earliest constructions are the Chern classes

c(∇) =
∑
k

ck(∇) :=

[
det

(
1 +

iR

2π

)]
=

[
exp tr ln

(
1 +

iR

2π

)]
and the Chern character

ch(∇) =
∑
k

chk(∇) :=

[
tr exp

(
iR

2π

)]
.

Further examples that we will consider include the Â-genus1

Â(∇) = det1/2
(

R/2

sinh(R/2)

)
1This formula of the Â-genus is for geometers; for topologists, R should be replaced with R/(2πi).
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and the Todd class

Todd(∇) = det
(

R

exp(R)− 1

)
,

which will play important roles in the Atiyah–Singer index theorem.

These classes, whose construction involves the curvature tensor, are actually independent of

the choice of connection.

1.1.3 Chern–Gauss–Bonnet Theorem

The Chern–Gauss–Bonnet Theorem is an example along the path of Chern–Weil theory show-

ing that topological invariants can be extracted from geometrical data. It states that, for M a

compact orientable 2n-dimensional Riemannian manifold,

χ(M) =

∫
M

1

(2π)n
Pf(R),

where Pf is the Pfaffian, and the class [Pf(R)] is the Euler class of TM . (If we regard R as a matrix

with coefficients in evenly graded differential forms, then Pf(R) is well-defined since the Pfaffian is

invariant under conjugation by matrices in SO(n). It should be noted however that Pf is not an

invariant polynomial.)

The Euler characteristic χ(M) is topological, and does not depend on the Riemannian metric.

1.2 Riemann–Roch Theorems

Enumerative problems in algebraic geometry often lead to topological invariants; the Riemann–

Roch theorem is one example. On a smooth projective curve X/C with a divisor D,

dimL(D)− dimL(K −D)︸ ︷︷ ︸
“analytic”

= deg(D)− g + 1︸ ︷︷ ︸
“topological”

,

where L(D) is the space meromorphic functions having pole of order ≤ ordxD at each point x ∈ X.

Meromorphic functions are solutions to an elliptic PDE, i.e. we have L(D) = ker ∂̄.

An alternative formulation of the Riemann–Roch Theorem is as follows. The Euler charac-

teristic χ(X,O(D)) equals the dimension of H0(X,O(D)) minus the dimension of H1(X,O(D)).

This can be computed as

χ(X,O(D)) = deg(D)− g + 1,

indicating potential generalization to varieties and vector bundles of arbitrary dimension.
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1.2.1 Hirzebruch–Riemann–Roch Theorem

Let X be a nonsingular projective variety of complex dimension n and V → X a holomorphic

vector bundle.

The Euler characteristic of V is the alternating sum

χ(X,V ) =

n∑
q=0

(−1)q dimHq(X,V ).

The Hirzebruch–Riemann–Roch (HRR) theorem states that

χ(X,V )︸ ︷︷ ︸
“analytic”

= Todd(X) ch(V )[X]︸ ︷︷ ︸
“topological”

,

where Todd(X) is the Todd class of X, and ch(V ) is the Chern character of V .

The Euler characteristic can be thought of as a Chern character, namely ch(
∑

(−1)qHq(X,F )) ∈

K(pt) ' Z.

1.2.2 Grothendieck–Riemann–Roch Theorem

Grothendieck’s dictum in developing algebraic geometry is to do geometry over a base, not

just over a point. One result following this principle is the Grothendieck–Riemann–Roch (GRR)

theorem. This theorem also marks Grothendieck’s first introduction of K-theory in history. Its

name derives from the German word Klasse, meaning “class”.

Let X be a smooth algebraic variety. Define K(X) to be the free abelian group generated

by coherent algebraic sheaves on X, modulo the equivalence F ∼ F ′ + F ′′ for every short exact

sequence 0 → F ′ → F → F ′′ → 0. We will introduce K-theory in more detail in the next section.

For now, let us emphasize one important fact: a coherent sheaf F on a smooth variety admits a

finite resolution by locally free sheaves (i.e. vector bundles)

0 → En → · · · → E1 → E0 → F → 0.

One can replace “coherent algebraic sheaves” by “holomorphic vector bundles”.

Let f : X → Y be a morphism of smooth varieties. For a coherent sheaf F on X, we define the

K-theoretic pushforward fk : K(X) → K(Y ) by

fk(F ) =
∑
q

(−1)qRqf∗(F ).
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When Y = pt the pushforwark fk reduces to the Euler characteristic.

Now assume f : X → Y is proper. The GRR theorem states that for α ∈ K(X),

ch(fkα)Todd(Y ) = f∗
(
ch(α)Todd(X)

)
.

One perspective is that the Todd class essentially “measures the lack of commutativity of push-

forwards and the Chern character”; the required “correction factors” depend only on X and Y . If

we take Y = pt, the left-hand side becomes χ(X,α), and the GRR theorem reduces to the HRR

theorem.

1.2.3 Hirzebruch Signature Theorem

Let X be a real 4k-dimensional closed oriented manifold. Its signature Sing(X) is the signature

of the cup pairing on H2k(X;R).

We define the L-class in terms of the Chern roots yi,

L(X) =

2k∏
i=1

yi
tanh yi

.

The Hirzebruch signature theorem states that

Sign(X)︸ ︷︷ ︸
“analytic”

= L(X)[X]︸ ︷︷ ︸
“topological”

.

Hirzebruch showed that both sides are invariant under oriented bordism, and therefore it

suffices to verify the formula on CP 2n.

1.3 Analysis

We discuss some motivations for the index theorems in analysis. The index of an elliptic

operator is constant as the operator is varied smoothly. It relates solvability (of PDEs) to topology.

Detailed definitions are given in the next section.

1.3.1 Elliptic Operators and the Fredholm Index

The Fredholm index of an elliptic operator D is

indD = dim ker−dim cokerD.

An elliptic operator is Fredholm, i.e. has finite-dimensional kernel and cokernel.

The Fredholm index of an elliptic operator is a deformation invariant, and depends only on

the homotopy class of the symbol.
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1.3.2 De Rham

On a closed Riemannian manifold X we have an elliptic operator

d+ d∗ : Ωeven(X) → Ωodd(X)

whose analytic index is ind(d+ d∗) = χ(X).

The kernel of d + d∗ consists of harmonic forms, and the above formula follows from Hodge

theory. Note that (d+ d∗)2 = dd∗ + d∗d is the Laplacian on differential forms.

If X is 4k-dimensional, we have the signature operator

d+ d∗ : Ω+(X,C) → Ω−(X,C)

whose index is ind(d+ d∗) = Sign(X), the signature of X.

This operator comes from a different Z/2Z-grading than the previous one.

Again the above formula follows from Hodge theory.

1.3.3 Dolbeault

On a Kähler manifold X with a holomorphic vector bundle V → X, we have an elliptic operator

∂̄ + ∂̄∗ : Ω0,even(X,V ) → Ω0,odd(X,V )

whose analytic index is

ind(∂̄ + ∂̄∗) = χ(X,V ).
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2 Statements

2.1 First Statement

In the first statement we define the topological index of an elliptic operator through the fol-

lowing steps.
Elliptic operators

K(TX) Zt-ind

σ

We will explain the symbol σ, and then introduce K-theory to define the map t-ind.

2.1.1 Differential Operators and the Symbol

Definition 1 (differential operators). Let E, F be vector bundles over the same manifold X. A

differential operator from (the space of local sections of) E to F is a linear operator D : Γ(E) → Γ(F )

which can be locally expressed as

D =
∑

|α|≤m

Aα(x)∂
α,

where α is a multiple index and Aα(x) is a linear map Ex → Fx. The integer m is called the

order of D (assuming Aα(x) 6= 0 for some α with |α| = m). The symbol of D is a bundle map

σ(D) : Symm T ∗X ⊗ E → F given by

σ(D)(ξα) =
∑

|α|=m

Aα(x)ξ
α.

If we denote by π∗ : T ∗X → X the cotangent bundle, then σ(D) can also be regarded as a

bundle map π∗E → π∗F over T ∗X, which restricts to Aα(x)ξ
α on the point (x, ξ) ∈ T ∗X.

2.1.2 K-theory

After Grothendieck introduced K-theory for projective algebraic varieties, Atiyah and Hirze-

bruch constructed a topological analog, K(X), defined for compact (or generally, locally compact)

spaces X.

Atiyah’s philosophy is that K-theory is more elementary than cohomology. K-theory, based

on linear algebra, is most compatible with linear differential operators.

We first review the basics of K-theory as presented by Atiyah [2].
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Definition 2 (K-theory). Let X be a compact space. Denote by Vect(X) the set of isomorphism

classes of (complex) vector bundles over X, which is a monoid under direct sum. Define K(X) to

be the universal abelian group associated to Vect(X).

Every element of K(X) is of the form [E]− [F ], where [E] and [F ] are isomorphism classes of

vector bundles over X.

The K-group is contravariant. For a compact space X with a distinguished basepoint i : x0 →

X, define the reduced K-group K̃(X) to be the kernel of the map

i∗ : K(X) → K(x0).

At times we need to consider vector bundles over the total space of other vector bundles, which

require a generalization of the definition to locally compact spaces.

Definition 3 (K-theory with compact support). Let X be a locally compact space. Consider the

one-point compactification X̃ and define the K-theory with compact support to be

K(X) := K̃(X̃).

Definition 4 (complex and support). A complex of vector spaces over X is a sequence of bundle

morphisms

0 E0 E1 · · · Ek 0
α1 α2 αk

with αi+1 ◦ αi = 0 for 1 ≤ i < k. At any point x ∈ X, we thus get a complex of vector spaces

0 (E0)x (E1)x · · · (Ek)x 0.
α1 α2 αk

The support of a complex of vector spaces is the set of points where it fails to be exact.

Proposition 1. Let X be a locally compact space. Let C(X) denote the set of homotopy classes of

complexes over X with compact support, and let C∅(X) be the subset consisting of exact complexes,

i.e. complexes with empty support. Then

K(X) ' C(X)/C∅(X).

Proposition 2. If X is compact, then a complex E• corresponds to the element

χ(E•) =
∑
i

(−1)i[Ei] ∈ K(X),

where the map χ : C(X) → K(X) is called the Euler characteristic.
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Now we briefly discuss Grothendieck’s work, described in [3], which predates that of Atiyah–

Hirzebruch. Grothendieck defined two different K-groups, one using vector bundles (denoted by

K0(X)) and the other using coherent sheaves (denoted by K0(X)). The group K0(X) forms a ring

under tensor product, and K0(X) becomes a module over K0(X). However the two K-groups are

isomorphic when X is non-singular.

2.1.3 Elliptic Operators and the Symbol Class

Definition 5. An elliptic operator from E to F is a differential operator D whose symbol σ(D)

gives an isomorphism π∗E → π∗F outside the zero section of T ∗X; i.e. the map σ(D)(ξα) is a

linear isomorphism Ex → Fx whenever ξ 6= 0.

Let D be an elliptic operator from E to F . Consider the cotangent bundle π : T ∗X → X;

denote by π∗E the pullback of E to T ∗X. The symbol of D is a map

σ(D) : π∗E → π∗F,

which is an isomorphism on T ∗X \ 0, and thus (by proposition 1) defines a class

[σ(D)] ∈ K(T ∗X),

called the symbol class of D.

There is a general notion of an elliptic complex, which is a complex (E•, D•) of differential

operators

Γ(E0) Γ(E1) Γ(E2) · · · Γ(Ek)
D2 DkD1

such that the sequence of symbols

0 π∗E0 π∗E1 π∗E2 · · · π∗Ek 0
σ(D2) σ(Dk)σ(D1)

is exact outside the zero section of T ∗X.

2.1.4 Analytic Index

An important result which allows the definition of the analytic index of an elliptic complex is

the following.
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Proposition 3. The homology groups of any elliptic complex are finite-dimensional.

Definition 6 (analytic index). The analytic index of an elliptic complex (E•, D•) is its Euler

characteristic,

a-ind(E•, D•) = χ(E) =
∑

(−1)i dimH i(E).

2.1.5 K-theoretic Thom Isomorphism

For a vector bundle π : E → X over a compact space X, consider the map α : π∗ ∧• E →

π∗ ∧•+1 E sending a pair (v, w) (v ∈ E,w ∈ ∧kEπ(v)) to (v, v ∧ w), giving the exterior complex

0 π∗ ∧0 E π∗ ∧1 E · · · π∗ ∧n E 0α α α

which defines an element λE ∈ K(E).

Theorem 4 (Thom isomorphism). If V is a complex vector bundle over a compact space X, then

the Thom map

φ : K(X) → K(E), u 7→ λEπ
∗u

is an isomorphism.

If we denote by i : X → E the zero section, then by proposition 2 we have

i∗φ(u) =
(∑

q

(−1)q ∧q E
)
· u. (1)

2.1.6 Topological Index

Following Lawson and Michelsohn [8], we define the topological index using K-theory.

First we introduce a K-theoretic pushforward map.
2

Definition 7. For an embedding X ↪→ Y of real manifolds, suppose that the normal bundle N to

X is equipped with a complex structure. Then we can define a natural mapping

f! : K(X) → K(Y )

by taking the Thom isomorphism K(X) → K(N) followed by the map K(N) → K(Y ), obtained

by identifying N with a regular neighborhood of X in Y .
2Thie map resembles the map fk =

∑
q(−1)qRqf∗ discussed in section 1.2.2, but the actual relationship remains

unclear to the author.
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Observe that for any proper embedding f : X → Y , the normal bundle to the embedding

f∗ : TX → TY , which equals the pullback of N ⊕ N ' N ⊗R C to TX, has a canonical complex

structure. Therefore we have a map

f! : K(TX) → K(TY ).

Equation (1) implies

f∗f!(u) =
(∑

(−1)q ∧q (N ⊗R C)
)
u.

Choose a smooth embedding i : X ↪→ RN into some Euclidean space, and consider the map

i! : K(TX) → K(TRN ) ' K(CN ).

Let j : pt → CN be the inclusion of the origin. Note that by definition the map j! : K(pt) →

K(CN ) is equal to the Thom isomorphism φ (for the CN -bundle over a point).3

Definition 8. The topological index is the composition4

K(TX)
i!−→ K(TRN )

j−1
!−→ K(pt) ' Z.

The topological index can also be defined in terms of characteristic classes and cohomology,

K(T ∗X)

H∗
cpt(T

∗X) H∗(X) H∗(X)

ch

ϕ Todd(X)

t-ind

where φ is the Thom isomorphism.

Recall that the analytic index of D depends only on the homotopy class of the symbol, that

is, on the class [σ(D)] ∈ K(T ∗X). Therefore the analytic index is also a map K(T ∗X) → Z.

Theorem 5 (Atiyah–Singer 1967). The analytic index and the topological index

a-ind, t-ind : K(T ∗X) → Z

are equivalent.
3This isomorphism is also related to Bott periodicity: it equals the map K(TRN ) → K(S2N ) ≃ K(pt).
4We make the identification T ∗X ≃ TX using a Riemannian metric on X.
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2.2 Second Statement

The second statement of the Atiyah–Singer index theorem gives a formula for the index of a

special elliptic operator, called the Dirac operator D, in terms of the Chern character of the Clifford

module and the Â-genus of the manifold. For this we will need concepts from supergeometry and

spin geometry. Supergeometry is roughly the geometry corresponding to Z/2Z-graded algebras,

and spin geometry are used to construct Dirac operators.

2.2.1 Super Vector Spaces

We restrict our attention to vector spaces over R or C. A super vector space is a Z/2Z-graded

vector space; that is, it decomposes into a direct sum of two vector spaces V0 and V1, called the

even and odd parts respectively. Elements of Vi are called pure elements of degree i (i ∈ Z/2Z).

The degree of a pure element x is denoted by |x|. We will also use the notation V = V + ⊕ V −

where V + is even and V − is odd.

The category of super vector spaces can be made into a symmetric monoidal category with the

tensor product

(X ⊗ Y )i =
⊕

j+k=i

Xj ⊗ Yk (i, j, k ∈ Z/2Z)

and the braiding BX,Y : X ⊗ Y → Y ⊗X given by

BX,Y (x⊗ y) = (−1)|x|·|y|y ⊗ x,

where x ∈ X and y ∈ Y are pure elements.

The inner Hom-object of this category is given by

(
Hom(X,Y )

)
i
=

⊕
j+i=k

Hom(Xj , Yk) (i, j, k ∈ Z/2Z).

In other words, the even part of Hom(X,Y ) consists of linear maps X → Y that preserve the

grading, while the odd part contains those that reverse the grading.

A super algebra is a super vector space A with a morphism A ⊗ A → A satisfying certain

axioms (associativity, unit, etc.); that is, an algebra in the category of super vector spaces. An

action of a super algebra A on a super vector space is a map A⊗ E → E, or equivalently a super

algebra homomorphism A → End(E), according to a property of the inner Hom-object.

When working with superalgebras, one must keep in mind that whenever two elements exchange
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positions, a sign may appear depending on their degrees5. An example is the supercommutator,

defined by

[x, y] = xy − (−1)|x|·|y|yx.

2.2.2 Clifford Algebras and Clifford Modules

Definition 9 (Clifford algebra). Let V be a vector space with a quadratic form Q. The Clifford

algebra Cl(V ) = Cl(V,Q) is the algebra generated by V with the relations

x2 = −Q(x) (x ∈ V ).

The Clifford algebra Cl(V ) can be constructed as the quotient of the tensor algebra T V by

an evenly graded ideal,

Cl(V ) = T V
/(

{x⊗ x+Q(x) : x ∈ V }
)
,

and thus Cl(V ) has a Z/2Z grading inherited from T V , making it a super algebra.

Note that for two elements x, y ∈ V satisfying the relation Q(x, y) = 0, denoted x ⊥ y, we

have xy = −yx; that is, x and y anticommute. Therefore the space Cl(V ) is isomorphic to the

exterior algebra ∧V as a super vector space (but clearly not as a super algebra) through the map

c : ∧ V → Cl(V ), given by

c : ei1 ∧ ei2 ∧ · · · ∧ eir 7→ ei1ei2 · · · eir

for any orthogonal basis {ei} of V . In fact, this isomorphism is natural, and in particular it is

independent of the orthogonal basis chosen. The inverse of c is called the symbol map

σ : Cl(V ) → ∧V.

Definition 10 (Clifford module). A Clifford module is a super vector space E = E+⊕E− equipped

with an action of Cl(V ), i.e. a super algebra homomorphism Cl(V ) → End(E).

Observe that the action of Cl(V ) on a Clifford module E can be specified by a map c : V →

End(E)− satisfying

[c(x), c(y)] = c(x)c(y) + c(y)c(x) = −2Q(x, y).

5This point is demonstrated most clearly through the categorical approach, as described in [5]. The book [5] also

contains a lecture by E. Witten describing a path integral proof of the Atiyah–Singer index theorem.
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Example 1 (exterior algebra as Clifford module). The exterior algebra ∧V is a Clifford module

with the action as follows. Denote by v♭ = Q(v,−) the dual of a vector v ∈ V , and denote by

ιv♭ : ∧• V → ∧•−1V the contraction. Consider the map c : V → End(E)− given by

c(v)α = v ∧ α− ιv♭α.

Then it can be checked that c(v)c(w) + c(w)c(v) = −2Q(v, w).

For a Riemannian manifold M there is a quadratic form on TM , so that the construction of

the Clifford algebra yields a bundle of Clifford algebras Cl(TM).

The symbol map from Clifford algebras to exterior algebras gives an isomorphism

σ−1 : Ω•(E) ' Γ(Cl(TM)⊗ E).

A Bundle E of Clifford modules is a Hermitian super vector bundle with an action

cl : Cl(TM)⊗ E → E.

They are needed to introduce the Dirac operators, whose squares are equal to Laplacians.

2.2.3 Spin Manifolds and Spinor bundles

The Lie group Spin(n) is a double cover of SO(n), which can be defined using a Clifford algebra.

The following definition of Spin(n), taken from [4], is less commonly seen but more concise. We

start with the Lie algebra.

Proposition 6. The space C2(V ) := c(∧2V ), i.e. the vector space spanned by the 2-vectors

xy (x, y ∈ V, x ⊥ y), is a Lie algebra under the commutator [−,−] in Cl(V ). Moreover it is

isomorphic to so(V ) through the map τ : C2(V ) → so(V ),

τ(a) · v = [a, v].

Definition 11 (spin group). The group Spin(V ) is the group obtained by exponentiating the Lie

algebra C2(V ) inside the Clifford algebra Cl(V ).

Definition 12 (spin structure). A spin structure on a manifold M is a reduction of the structure

group of its principal SO(n)-bundle PSO(M) through Spin(n) → SO(n). In other words, a spin

structure is a double cover PSpin(M) → PSO(M), where PSpin(M) is a principal Spin(n)-bundle,

and the double cover is compatible with the actions of Spin(n) and SO(n). A manifold with a spin

structure is called a spin manifold.
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Equivalently a spin structure is a Z/2-graded irreducible Cl(TM)-Cl(Rn) bimodule.

If V is a 2k-dimensional quadratic vector space, then there is a unique Cl(V )-module S such

that

End(S) ' Cl(V )⊗ C.

Using this on a spin manifold we define a special Clifford module called the spinor bundle

/S := Spin(M)⊗Spin(n) S.

2.2.4 Clifford Superconnections and Curvature

A superconnection on a super vector bundle is an odd map

A : Ω∗(M,E) → Ω∗(M,E)

satisfying the Leibniz rule

A(α ∧ s) = dα ∧ s+ (−1)|α|α ∧ A(s) (α ∈ Ω∗(M), s ∈ Ω∗(M,E)).

A Clifford superconnection is one compatible with the Levi-Civita connection ∇ on TM :

[A, cl(v)] = cl(∇v) (v ∈ Γ(M,TM)).

Similar to the classical case, the curvature is related to the square of connection. Computation

shows

[A2, cl(v)] = cl(∇2v) = cl(Rv) = [RE , cl(v)],

which justifies the following result.

Proposition 7. For A a Clifford superconnection on E, we have

A2 = RE + F E/S ,

where RE ∈ Ω2(M,End E) is (a Clifford version of) the curvature, and F E/S ∈ Ω2(M,EndCl(TM)(E)

is called the twisting curvature.

On a spin manifold, all Clifford bundles E are twists of the spinor bundle /S, i.e. E = /S⊗W .

The twisting curvature is then just the curvature of W .
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2.2.5 Dirac Operators

Dirac operators play an important role in the index theorem. In analogy to the classical Dirac

operator

D : Γ(M,E)
∇−→ Ω1(M,E)

metric−→ Γ(M,TM ⊗ E)
cl−→ Γ(M,E)

we define the Dirac operator DA associated to a Clifford superconnection A by

DA : Γ(M,E)
A−→ Ω∗(M,E)

σ−1

−→ Γ(M,Cl(TM)⊗ E)
cl−→ Γ(M,E).

Dirac operators were originally motivated by the search for a first-order differential operator

whose square equals the Laplacian.

Proposition 8 (Lichnerowicz). The square of a Dirac operator D satisfies

D2
A = 4A + cl(F E/S) +

rM
4

,

where rM is the scalar curvature of M .

For the spinor bundle E = /S, the twisting F E/S vanishes so that /D
2
= 4/S + rM/4.

2.2.6 Â-genus and Chern Character

For a Riemannian manifold M with Ricci curvature R we define the Â-genus to be

Â(M) = det1/2
(

R/2

sinh(R/2)

)
.

Definition 13 (Relative Chern character). We define the relative Chern character of a Clifford

bundle E as

ch(E/S) = strE/S exp(−F E/S).

ch(E/S) is a closed form; its class is independent of the choise of the Clifford superconnection.

Theorem 9 (Atiyah–Singer). The index of a Dirac operator D of a Clifford module E is

ind(D) =

∫
M

Â(M) ch(E/S),

For the Clifford module E = ∧∗T ∗M with the Dirac operator D = d + d∗ this reduces to the

Chern–Gauss–Bonnet theorem.

For the Clifford module E = ∧0,∗T ∗M ⊗V with the Dirac operator D = ∂̄+ ∂̄∗ this reduces to

the Hirzebruch–Riemann–Roch theorem.
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2.3 Familiy Index Theorem

In the same sense that the Grothendieck–Riemann–Roch theorem generalizes the Riemann–

Roch theorem, there is a generalization of the Atiyah–Singer index theorem called the family index

theorem.

Denote by F the space of Fredholm operators on a Hilbert space H. To a continuous family

X → F of Fredholm operators, we can assign an analytic index in K(X), which when X = pt

(i.e. for a single operator) reduces to an integer.

2.4 Equivariant Index Theorem

Another important generalization of the index theorem considers the equivariant case, where

there exists an action of a compact Lie group.

2.4.1 Equivariant K-theory

Equivariant K-theory, an equivariant analog of K-theory, plays an essential role in formulating

the equivariant index theorem. Equivariant K-theory also appears in the axioms for the index

proposed by Atiyah and Singer [1].

Definition 14 (G-vector bundles). For a Lie group G and a topological space X, a G-vector bundle

on X is a vector bundle π : E → X equipped with an action of G on both E and X satisfying the

following conditions:

• The G-action commutes with the projection π.

• For each g ∈ G and x ∈ X, the map Ex → Egx induced by g is a linear transformation.

Let G be a compact Lie group. By considering G-vector bundles on X, we can define a ring

KG(X). When G is the trivial group, KG(X) reduces to K(X). If X is a point, a G-vector bundle

on X is just a G-representation, and so KG(X) = KG(pt) reduces to the representation ring R(G)

of G. For general spaces X, KG(X) is a module over R(G).

2.4.2 G-Indices

As in the ordinary case, we can define the topological G-index by

t-indG : KG(TX)
i!−→ KG(TM)

j−1
!−→ KG(pt) ' R(G),
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where i : X → M is an embedding of X into a finite-dimensional G-module M , and j : pt → M is

the inclusion of the origin.

An elliptic operator D from E to F is called G-invariant if it commutes with the G-actions on

Γ(E) and Γ(F ). The analytic G-index of D is defined by

[kerD]− [cokerD] ∈ KG(pt) ' R(G).

This gives a map

a-indG : KG(TX) → R(G).

Theorem 10 (G-Index Theorem). The topological and analytic G-indices

t-indG, a-indG : KG(TX) → KG(pt) ' R(G)

are equivalent.
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3 Proofs

3.1 K-theory Method

In their joint paper [1], Atiyah and Singer present a proof of their index theorem in purely

K-theoretic terms, while “no homology or cohomology is used”.

Atiyah and Singer defines two “index homomorphisms”

ind : K(T ∗X) → Z,

and uniquely characterize the index homomorphisms by axioms, thus showing that

analytic index = topological index.

3.2 Heat Kernel Method

The Heat flow provide intuition about the large and small time behavior of the heat operator

e−t△. As t → ∞, it converges to the projection onto ker4. As t → 0+ it converges to id.

We consider the operator e−tD2 for D a Dirac operator. The key point is that the super trace

str(e−tD2
) is independent of t. As t → 0, we have an asymptotic expansion of str(e−tD2

) which

gives

str(e−tD2
) = ind(D).

3.2.1 Density Bundles

Definition 15. Let M be a manifold. The s-density bundle |Λ|s is the line bundle associated to

TM via the representation |det|−1/2 : GLn(R) → R×. In case s = 1 we call it the density bundle

|Λ|.

We can integrate (compact-supported) sections of the density bundle |Λ|, even without orien-

tation. Consequently, for a vector bundle E we have a pairing Γ(E)× Γ(E∗ ⊗ |Λ|) → R; moreover

if E is an Euclidean vector bundle, the there is a canonical inner product on Γ(E ⊗ |Λ|1/2).

Definition 16. Let E be a vector bundle on a Riemannian manifold M . A generalized Laplacian

on E is a second-order differential operator H on E whose symbol is σ(H)(x, ξ) = |ξ|2.
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3.2.2 Heat Kernel

The heat kernel is the integral kernel of the heat semigroup, and also the fundamental solution

to the heat equation.

On Rn with the Laplacian 4 = − ∂

∂x21
− · · · − ∂

∂x2n
, the heat kernel is

Kt(x, y) =
1

(4πt)n/2
e−

(x−y)2

4t ,

which satisfies (in the sense of distributions)

(∂t +4x)Kt(x, y) = δ(x− y).

The heat kernel solves the heat equation in the sense that, for any compactly supported smooth

function f on Rn, the function

ut(x) =

∫
Rn

Kt(x, y)f(y) dy

satisfies limt→0+ ut(x) = f(x), and (∂t +4)ut(x) = 0.

Analogously, we may define heat kernels on general manifolds.

Definition 17 (heat kernel). Let E be a vector bundle over a Riemannian manifold M . Let H be

a generalized Laplacian on E ⊗ |Λ|1/2. A heat kernel for H is a section Kt(x, y) of (E ⊗ |Λ|1/2) ⊠

(E∗ ⊗ |Λ|1/2) over R+ ×M ×M , which is C1 in t ∈ R+, C2 in x ∈ M , and satisfies

(∂t +Hx)Kt(x, y) = δ(x− y).

Theorem 11 (McKean–Singer). For a Dirac operator D,

ind(D) =

∫
M

str(Kt(x, x)) dx.

One consequence of this formula is that ind(D) is independent of the metric of M and the

metric and connection of E, since the integral varies smoothly for a family, and the index has to

be an integer.

3.2.3 Asymptotic Expansion

Getzler [7] provides a proof of the index theorem using the asymptotic expansion of the heat

kernel at t → 0.
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Theorem 12 (Getzler). We have the asymptotic expansion

Kt(x, x) ∼ (4πt)n/2
∞∑
i=0

ki(x)t
i

for ki ∈ Γ(Cl2i(TM)⊗ EndCl(TM)(E)), satisfying

σ(K) =

n/2∑
i=0

σ2i(ki) = det1/2
( R/2

sinh(R/2)

)
exp(−F E/S).
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